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A random fiber bundle model with a mixed Weibull distribution is studied under the global load sharing
scheme. The mixed model consists of two sets of fibers. The threshold strength of one set of fibers is randomly
chosen from a Weibull distribution with a particular Weibull index, and another set of fibers with a different
index. The mixing tunes the critical stress of the bundle and the variation of critical stress with the amount of
mixing is determined using a probabilistic method where the external load is increased quasistatically. In a
special case which we illustrate, the critical stress is found to vary linearly with the mixing parameter. The
critical exponents and power-law behavior of burst avalanche size distribution is found to remain unaltered due
to mixing.
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I. INTRODUCTION

Sudden catastrophic failure of structures due to unex-
pected fracture of component materials is a concern and a
challenging problem of physics as well as engineering. The
dynamics of the failure of materials show interesting proper-
ties and hence there has been an enormous amount of study
on the breakdown phenomena up to now �1–3�. The com-
plexity involved in fracture processes can be suitably mod-
eled by grossly simplified models. The simplest available
model is fiber bundle model �FBM� �4–7�.

A FBM consists of N parallel fibers. The disorder of a
real system is introduced in the fiber bundle in the form of
random distribution of strength of each fiber taken from a
probability density p��� and hence called random fiber
bundle model �RFBM�. The strength of each fiber is called
its threshold strength. As a force F is applied externally on a
bundle of N fibers, a stress �=F /N develops on each of
them. The fibers which have their threshold strength smaller
than the stress generated will break immediately. The next
question that arises is the affect of breaking of these fibers
on the remaining intact fibers, i.e., one has to decide a
load sharing rule. The two extreme cases of load sharing
mechanisms are global load sharing �GLS� �5,8,9� and
local load sharing �LLS� �10–12�. In GLS, the stress of
the broken fiber is equally distributed to the remaining intact
fibers. This rule neglects local fluctuations in stress and
therefore is effectively a mean field model with long range
interactions among the elements of the system �13�. On
the other hand, in LLS the stress of the broken fiber is given
only to its nearest surviving neighbors. It is obvious that the
actual breaking process involves a sharing rule which is in
between GLS and LLS. Several studies have been made
which consider a rule interpolating between GLS and LLS
�14,15�.

For a given force F, some fibers break and they distribute
their load to the surviving fibers following a load sharing
rule causing further failures and redistribution of stress. This

process continues until all the remaining fibers have their
threshold strength greater than the redistributed stress acting
on them. This corresponds to the fixed point of the dynamics
of the system. As the applied force is increased on the sys-
tem, more and more fibers break. An avalanche of size ∆ is
defined as the number of failed fibers between two succes-
sive external loadings. There exists a critical load �or stress
�c� beyond which if the load is applied, complete failure of
the system takes place. Most of the studies on FBM involve
the determination of the critical stress �c and the investiga-
tion of the type of phase transition from a state of partial
failure to a state of complete failure. It has been shown
that a bundle following GLS has a finite value of critical
stress and belongs to a universality class with a specific
set of critical exponents �8,16� whereas there is no finite
critical stress �c at thermodynamic limit in the case of LLS
in one dimension �10,18�. On the other hand, LLS on
complex network has been shown to belong to the same
universality class as that of GLS with the same critical
exponents �19�.

In this paper, we study a FBM with mixed fibers. Fibers
have their threshold strength randomly chosen from Weibull
distributions with two different index parameters. The moti-
vation here is to study the dynamics of random fibers in the
presence of disorder caused due to mixing of two types of
fibers with overlapping distribution of threshold strengths.
Moreover, the probabilistic method implemented to estimate
the critical stress can be very easily used to study any type of
mixed fiber bundles thus enabling one to put maximum
disorder in the system being studied.

Section II consists of description of the model highlight-
ing the method used. In Sec. III we present the results.
Section IV includes discussions and conclusions.

II. THE MODEL

In the Weibull distribution �WD� of threshold strength of
fibers, the probability of failure of each element when a
stress � is generated has a form

P��� = 1 − e−��/�0��
, �1�

where �0 is a reference strength and � is called the Weibull
index. We consider a mixed RFBM with WD of threshold
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strength of fibers where strengths of fibers are randomly cho-
sen from two different distributions characterized by differ-
ent Weibull indices and study the critical behavior of the
model. A fraction x �henceforth called the mixing parameter�
of fibers belong to the class A �WD with �=�1� and the
remaining �1−x� fraction belong to the class B �WD with
�=�2� with the reference strength �0 set equal to 1 in both
the distributions.

The probabilistic method introduced by Moreno, Gomez,
and Pacheco �9� is extended to explore the critical behavior
of the above model. For the conventional WD �x=1 or 0�, let
us consider a situation where the stress on each fiber in-
creases from �1 to �2. The probability that a fiber randomly
chosen from the WD survives from the load �1 but fails
when the load is �2, is given by

p��1,�2� =
P��2� − P��1�

1 − P��1�
= 1 − e−��2

�−�1
��.

Thus the probability that the chosen fiber that has survived
the load �1 also survives the �higher� load �2 is q��1 ,�2�
=e−��2

�−�1
��. The key point is that the force F on the bundle

is increased quasistatically so that only the weakest fiber
amongst the remaining intact fibers breaks. Thus, one needs
to identify the weakest fiber, break that fiber, and then
calculate the number of remaining unbroken fibers using
q��1 ,�2� recursively, updating the value of �2 and �1 due
to the load given away by the broken fibers, until no
more failure occurs. As mentioned previously, the dynamics
of breaking will continue until the system reaches a
fixed point. The process of slow increase of external load
is carried on up to the critical stress �c. The method avoids
the random averaging involved in a Monte Carlo simulation
and hence turns out to be very useful in dealing with
fluctuations.

However, to deal with the “mixed” random fiber bundle
model, the above method needs to be generalized in an
appropriate manner. The essential point is the fact that we
need to keep track of number of unbroken fibers in each
distribution separately. Let us assume that after a loading is
done and a fixed point is reached, Nk1

and Nk2
are the number

of unbroken fibers corresponding to �=�1 and �=�2 distri-
bution, respectively, and �k is the stress per fiber at that
instant.

We define q1 and q2 as follows:

q1��1,�2� = e−��2
�1−�1

�1�,

q2��1,�2� = e−��2
�2−�1

�2�.

One needs to calculate the load �Nk1
+Nk2

��l that has to be
applied to break one fiber. Here, �l=min��l1

,�l2
� where �l1

�or �l2
� is the next weakest fiber in the �=�1 �or �=�2�

distribution of strength of fibers and is obtained by the
solution of the following equations:

Nk1
− 1 = Nk1

q1��k,�l1
� ,

and

Nk2
− 1 = Nk2

q2��k,�l2
�

which gives

�l1
= ��k

�1 − ln�1 −
1

Nk1

��1/�1

, �2�

�l2
= ��k

�2 − ln�1 −
1

Nk2

��1/�2

. �3�

The breaking of one fiber and the redistribution of its stress
to all the remaining intact fibers causes some more failures.
Let us assume that during this avalanche, at some point be-

fore the fixed point is reached, there are Nk1
˜ and Nk2

˜ number
of unbroken fibers belonging to the two distributions where

each fiber is under a stress �k
˜ . This stress causes some more

failures and as a result Nk1
� and Nk2

� fibers are unbroken. Let
the new stress developed be �k�. The number of fibers which

survive �k
˜ and �k� are obtained using the relation

Nk1
� = Nk1

� q1��̃k,�k�� , �4�

Nk2
� = Nk2

� q2��̃k,�k�� . �5�

The stress on each fiber is now equal to �Nk2
� +Nk1

� ��k� / �Nk1
�

+Nk2
� �. Equations �4� and �5� are used again and again until a

fixed point is reached. The fixed point condition is given by
�Nk1

� +Nk2
� �− �Nk1

� +Nk2
� ��� where � is a small number

�0.001�. It should be noted that the critical behavior does not
depend on the choice of �. After the fixed point is reached,
stress �l is calculated once again as mentioned before and
the whole process is repeated until complete failure occurs at
�c.

It should also be mentioned here that the critical stress �c
can also be derived using directly the cumulative distribution
function for the mixed model as given in Eq. �6� in p��1 ,�2�.
However, in this case, the expression of �l, as defined above,
turns out to be very complicated and it is difficult to arrive at
a simple closed form as shown in Eq. �2� or �3�.

III. RESULTS

We present here the main results of a particular case,
x=0.5, �1=2, and �2=3. Figure 1 shows the fraction of total
number of broken fibers as a function of applied stress �.
The graph clearly shows the existence of a critical stress
�c=0.46 at which fraction of failed fibers increases rapidly
and the bundle breaks down completely. The critical stress of
the mixed bundle lies between that of the two pure bundles
�for �=2, �c=0.42 and for �=3, �c=0.49 obtained using
�c= ��e�−1/�� �5�. Thus, the resulting critical stress of the
mixed fiber bundle model can be tuned by varying the
mixing parameter x.

The mean avalanche size S of failure is defined as the
total number of broken fibers between two successive load-
ings. It diverges near the critical point as ��c−��−� with an
exponent �=1/2. Scaling behavior of S is shown in Fig. 2.
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The important feature associated with the failure process
in RFBM is the power-law behavior of burst avalanche dis-
tribution of fibers. The probabilistic approach �9� imple-
mented to determine �c turns out to be inappropriate in
exploring the behavior of avalanche size distribution. This is
due to the fact that the mean avalanche sizes �S� obtained for
different � are of fractional values which leads to a difficulty
in calculating the distribution of avalanche sizes. We there-
fore use the standard Monte Carlo method along with the
weakest fiber approach �17� where the external load is in-
creased by an amount sufficient to break the weakest intact
fiber. The corresponding integer value of the size of an ava-
lanche is denoted by �. For GLS, the distribution D��� of an

avalanche of size � follows a power law D�����−	, where
	=5/2 in the asymptotic limit �17�. Figure 3 shows the ava-
lanche size distribution for the present mixed RFBM ob-
tained numerically with x=0.5; a power-law behavior with
the same exponent 5 /2 is clearly observed, confirming the
mean field nature of the model. That the 5/2 behavior is
expected even for a mixed RFBM for any x can be justified
using the saddle point method applicable in the limit of large
� �17�. In the present case ��1=2 and �2=3�, the probability
that a fiber will break when subjected to a stress � is

P��� = x�1 − exp�− �2�� + �1 − x��1 − exp�− �3�� �6�

so that the density distribution becomes

p��� = 2x� exp�− �2� + �1 − x�3�2 exp�− �3� . �7�

The avalanche size distribution takes the form

D���
N

=
��−1

�!
	

0

�*

d�
1

�
�1 − P��� − �p����


 � �p���
1 − P���

exp�−
�p���

1 − P������

, �8�

where �* is the redistributed stress at the critical point at
which the average applied force �F=N�(1− P���)� maxi-
mizes, and p��� and P��� are as defined above. The function
inside the square bracket has a maximum when

�p���
1 − P���

= 1. �9�

It should be noted that the above condition is satisfied when
�=�*. Since the threshold distribution of fibers �Eq. �7��
does not have any discontinuity, the saddle point integration
of Eq. �8� �retaining the first-order term in the expansion of
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FIG. 1. Variation of fraction of broken fibers with external load
per fiber � for a RFBM with two distributions corresponding to
�1=2, �2=3, x=0.5, and N=50 000.
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FIG. 2. Scaling behavior of mean avalanche size S as the critical
point is reached for the mixed model. Also shown is a straight line
�dotted� with slope �−1/2�. Here, N=50 000 and x=0.5.
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FIG. 3. Avalanche size distribution for x=0.5, �1=2, �2=3, and
N=50 000. A straight line with slope −5/2 is also shown.
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the prefactor �1− P���−�p���� around �=�*� yields the
asymptotic behavior D�����−5/2.

Let us now comment on the imminent failure �20� behav-
ior, when a fraction of weak fibers are already removed, and
the distribution is close to the critical distribution, i.e., the
strength of the weakest intact fiber ��0� is close to the redis-
tributed stress �* at the critical point. We shall consider the
case when �1=2 and �2=3. The variation of D��� with � is
shown in Fig. 4 and as in the pure Weibull case, we observe
a crossover from �−3/2 to �−5/2 as � increases. For the criti-
cal distribution, however, we observe a �−3/2 behavior for the
whole range of � �inset Fig. 4�.

Although the power law behavior of the avalanche size
distribution near the critical distribution remain unaltered by
mixing, one may ask the question about the behavior of �c
with x �where �c denotes the avalanche size at which cross-
over from 3/2 to 5/2 is observed�. For the case of interest,
�1=2 and �2=3, �c does not change appreciably with x. This
is due to the fact that �* is almost constant as x is varied
�explained later�. On the other hand, if we consider the case
�1=1 and �2=3 �Fig. 6�, �c should decrease with x keeping
�0 constant because as x is increased �* also increases taking
the system away from critical distribution.

The critical exponent � and the power-law behavior of
avalanche size distribution of the mixed model remains un-
changed for any value of mixing parameter x. This supports
the fact that the critical behavior of a fiber bundle model is
determined entirely by the load-sharing rule.

However, the variation of �c with the mixing parameter x
shows a very interesting linear behavior �Fig. 5�. To justify
the linear behavior, we recall the probability distribution �Eq.
�6��. A relation between the critical stress and �* can be

obtained by calculating the applied force at �* where �* is a
solution of Eq. �9�:

�c =
F

N
= �*2

p��*� . �10�

For the conventional WD, �*= � 1
�

�1/�, which immediately
reveals the fact that the difference in �* for the cases
�=2 and �=3 is very small as compared to the change in
corresponding �c values. To a good approximation, one can
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FIG. 6. Nonlinear variation of critical stress with x for �1=1 and
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set �*=constant=c, so that Eq. �10� combined with Eq. �7�
yields

�c = c2�2xc exp�− c2�� + �1 − x�3c2 exp�− c3�

= xc2�2c exp�− c2� − 3c2 exp�− c3�� + 3c4 exp�− c3� ,

which justifies the dominant linear dependence of �c on x for
this particular case. It should also be emphasized that this
linear relationship is a characteristic of situations where the
variation of �* is negligible �to the lowest order� as x is
tuned from 0 to 1 �e.g., the present case� and in general there
is a nonlinear relationship as shown in Fig. 6.

In a recent work �21�, the shear failure of a glued interface
has been studied using a simple beam model where beams
�fibers� connect the two surfaces. The stretching and bending
threshold strength of the beams, denoted by �1 and �2, re-
spectively, are randomly distributed variables satisfying a
joint probability distribution function p��1 ,�2�. The mean
field critical exponents are obtained when the threshold dis-
tributions for bending and stretching modes are independent
and chosen from two different WD. In our model, we study
fibers with threshold strength chosen from two Weibull dis-
tributions with different Weibull indices and the critical
exponents stick to the mean field values also in our case.

IV. CONCLUSION

The critical stress of a mixed RFBM with Weibull distri-
bution and GLS is studied using a probabilistic approach

where the external force is increased quasistatically at every
step of loading �9�. The advantage of this method is that it
does not require the process of random averaging which
takes comparatively longer computational time. We obtain
the variation of critical stress with parameter x. This func-
tional dependence of the critical stress on the characteristic
quantity “the mixing parameter” is an important objective of
this work.

The critical behavior of the mixed model namely the criti-
cal exponents and the power law behavior of the burst ava-
lanche distribution are the same as the mean field. In a mixed
Weibull distribution, the threshold distributions of the two
types of fibers are overlapping or the cumulative distribution
is continuous. The presence of discontinuity modifies the
avalanche size distribution for smaller � �22�. Hence one
expects the mean field �GLS� behavior of the mixed model.
The behavior of the imminent failure shows a crossover in
the avalanche size exponent from 5/2 to 3/2 as the critical
distribution is approached. In some distributions �depending
upon �1 and �2�, the effective critical stress is found to vary
linearly with the mixing parameter x. We have pointed out
the origin of the apparent linear behavior and argued that in
general a nonlinear variation is expected.
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